在岗教师

  • 陈秀琼

    讲师,理学博士

    主要研究方向:非线性滤波

    办公室:信息楼327 &cxq0828@ruc.edu.cn
  • 教育经历

    2010.09 - 2014.06 本科,北京航空航天大学,数学科学学院

    2014.09 - 2019.07 博士,清华大学,数学科学系

    工作经历

    2019.07 - 2021.07 博士后,清华大学,丘成桐数学科学中心

    2021.08 至今 讲师,中国人民大学,数学学院

    科研成果

    Xiuqiong Chen, Zeju Sun, Yangtianze Tao, Stephen S.-T. Yau, A uniform framework of Yau-Yau algorithm based on deep learning with the capability of overcoming the curse of dimensionality, IEEE Transactions on Automatic Control, 2024, to appear, DOI: 10.1109/TAC.2024.3424628.

    Zeju Sun, Xiuqiong Chen, Stephen S.-T. Yau, Recurrent neural network spectral method and its application in stable filtering problems, Automatica, to appear.

    Xiuqiong Chen, Jiayi Kang, Stephen S.-T. Yau, Continuous discrete optimal transportation particle filter, Asian Journal of Mathematics, to appear.

    Xiuqiong Chen, Jiayi Kang, Stephen S.-T. Yau, Time-varying feedback particle filter, Automatica, 2024, 167:111740.

    Xiuqiong Chen, Yangtianze Tao and Wenjie Xu, Stephen S.-T. Yau, Recurrent neural networks are universal approximators with stochastic inputs, IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(10): 7992-8006.

    Xiuqiong Chen, Stephen S.-T. Yau, On the stability of linear feedback particle filter, Asian Journal of Mathematics, Vol. 27, No. 1 (2023), 95-120.

    Xiuqiong Chen, Xue Luo, Ji Shi, Stephen S.-T. Yau, General convergence result for continuous-discrete feedback particle filter, International Journal of Control, Vol. 95, No. 11(2022), 2972-2986.

    Xiuqiong Chen, Jiayi Kang, Mina Teicher, Stephen S.-T. Yau, A new linear regression Kalman filter with symmetric samples, Symmetry, Vol. 13, No. 11 (2021), 1-13.

    Xiuqiong Chen, Ji Shi, Stephen S.-T. Yau, Real-time solution of time-varying Yau filtering problems via direct method and Gaussian approximation, IEEE Transactions on Automatic Control, 2019, 64(4): 1648-1654.

    Xiuqiong Chen, Wenhui Dong, A survey of direct methods for Yau filtering systems, Communications in Information and Systems, 2019, 19(2), 167-191.

    荣誉获奖

    博士后入选清华大学“水木学者”计划。

学院办公室:010-82507161

本科生教务:010-62513386

研究生教务与国际交流:010-82507161

党团学办公室:010-62515886

在职课程培训班:010-82507075

 

邮编:100872

电话:010-82507161

传真:010-62513316

E-mail:mathruc@ruc.edu.cn/mathrucdw@ruc.edu.cn

地址:北京市海淀区中关村大街59号中国人民大学数学楼

数学学院公众号

版权所有 中国人民大学数学学院 升星提供技术服务