报告时间:2025年11月4日14:00-15:00
预期地点:中国人民大学数学学院二层报告厅
报告名称:辛流形半示性数和它的计算公式
Symplectic semi-characteristic and its formula
邀请人:王善文
报告摘要:在2012和2016年,Tsai、Tseng、Yau定义了一个辛流形的不变量,称为滤过上同调。滤过上同调的定义涉及了来自辛形式的信息,进而有许多有趣的应用。例如,它能用来区分同一个流形上的不同的辛结构。
一个重要的事实是,对于闭辛流形,它的滤过上同调群的维数的交错和始终为0。因此,我们期望抽出滤过上同调的偶次部分(等价地,奇次部分)能得到某些几何信息。在本次报告中,对于4n维的闭辛流形,我们使用滤过上同调中的偶次初始部分,定义它的辛流形半示性数。接着,我们用一个非退化的光滑向量场给出这个半示性数的计算公式。基于这个计算公式,我们看出,这个辛流形半示性数不仅类比了经典的de Rham上同调的Euler示性数,也同时不依赖于辛形式的选择。
本次报告基于预印本arXiv:2505.14496。
In 2012 and 2016, Tsai, Tseng, and Yau defined a symplectic invariant called the filtered cohomology. The filtered cohomology involves the information from the symplectic form and has many interesting applications. For example, it distinguishes different symplectic structures on the same manifold.
An important fact is, for any closed symplectic manifold, the alternating sum of the dimensions of its filtered cohomology groups is zero. Thus, we expect some geometric information carried out by the even-degree part (equivalently, the odd-degree part) of its filtered cohomology. In this talk, for any 4n-dimensional closed symplectic manifold, using the even-degree primitive part of its filtered cohomology, we define its symplectic semi-characteristic. Then, using a non-degenerate smooth vector field, we give a formula to the symplectic semi-characteristic. Based on this formula, we see that the symplectic semi-characteristic is an analogue of the classical Euler characteristic and is independent of the chosen symplectic form.
This talk is based on the preprint arXiv:2505.14496.
专家简介:庄昊,现为北京国际数学研究中心博士后,合作导师为刘小博教授。2019年本科毕业于复旦大学,2025年博士毕业于Washington University in St. Louis,博士论文导师为唐翔教授。主要研究兴趣为数学物理,涉及指标理论的渐近分析方法、Kasparov KK理论、辛流形上的不变量等内容。
