报告人:娄晗
时间:12月8日下午2点
地点:立德楼906
题目:On Lagrangian Tori in S^2×S^2
摘要:K. Fukaya, Y. Oh, H. Ohta, and K. Ono (FOOO) obtained the monotone symplectic manifold S^2×S^2 by resolving the singularity of a toric degeneration of a Hirzebruch surface. They identified a continuum of toric fibers in the resolved toric degeneration that are not Hamiltonian isotopic to the toric fibers of the standard toric structure on S^2×S^2. In this talk, I will provide a comprehensive classification: for any toric fiber in FOOO's construction of S^2×S^2, we determine whether it is Hamiltonian isotopic to a toric fiber of the standard toric structure of S^2×S^2.
报告人简介:娄晗,2025年秋获美国佐治亚大学博士学位,师从Michael Usher教授。研究兴趣聚焦于辛几何、Floer理论与哈密顿系统。2025年9月加入北京大学北京国际数学研究中心从事博士后研究。