报告人:Professor Jie Xiao (加拿大纽芬兰纪念大学)
时间: 2024年08月31日、9月1日、9月2日上午, 9:00-11:00
地点:国学馆110
1.Hypersurface potentials & capacities via semilinear wave equations
摘要: Based on the paper joint with David R. Adams entitled above, this talk will demonstrate a case study of: not only the newly-discovered hypersurface potential & hypersurface capacity living on a homogeneous graph; but also the induced wave potential under the spherical symmetry with respect to the space variable; as well as a unique weak solution of the model semilinear wave equation.
2. Full capacity-volumetry of sharp exp-integrability law
摘要: Based on the paper joint with David R. Adams entitled above, this talk will use Law of Trichotomy to show a full range of capacity-volumetry of the sharp exp-integrability law which covers the sharp Adams-Moser-Trudinger exp-integrability law for higher order derivatives, thereby discovering a new approach to a relatively complete family of the essential capacity-volumetric estimates with optimal constants including the sharp Ahlfors-Beurling-P& Morrey-Sobolev capacity-volumetric inequalities.
3. A geometric measure theoretic look at the Besov capacities
摘要: Based on the paper joint with David R. Adams entitled above, this talk will present not only a capacitary variant of the homogeneous Besov exp-integrability but also an extension of the Choquet-Hausdorff integration of the Hardy-Littlewood maximal operator through a dyadic Hausdroff-Netrusov capacity which actually amounts to a nonhomogeneous Besov capacity.
专家简介: 肖杰教授的研究和教学兴趣在于几何分析和偏微分方程。特别地,肖杰教授致力于调和分析,复分析和算子理论及其交叉应用,但也将函数空间和位势理论的方法和技术应用于共形微分几何、热方程、纳维-斯托克斯方程和波动方程的研究。迄今为止,肖杰教授有200多篇文章发表在国际领先的数学期刊上,包括《Adv. Math.》、《J. Math. Pures Appl.》、《J. Eur. Math. Soc》等。 同时,肖杰教授已发表6本教材和专著。此外,肖杰教授还担任《Advances in Analysis and Geometry》和《Canadian Mathematical Bulleti》期刊的主编,以及《Journal of Mathematical Analysis and Applications》的部门编辑。