报告题目:Refined blow up analysis of supercritical concentration phenomena
报告人:王克磊 教授(武汉大学)
报告时间:2021年01月07日周四 14:00-15:00
报告地点:(腾讯会议ID:475 3073 5615)
摘要:Concentration phenomena can be observed in many PDE problems, such as the bubbling phenomena in harmonic maps and many other geometric variational problems. In these problems, when the spatial dimension is above the critical one, the concentration set is usually a high dimensional set. The lower order information about this concentration set (e.g. rectifiability, energy identity) has been explored for more than two decades. In this talk, I would like to discuss some problems related to higher order information, through two typical examples: Allen-Cahn equation and nonlinear heat equation.
报告人简介:王克磊,武汉大学教授、博士生导师,主要研究椭圆与抛物型偏微分方程,特别是偏微分方程的奇异扰动理论及相关的自由边界问题等。曾荣获第十一届钟家庆数学奖,入选国家级人才计划。王克磊教授在难度很大的薛定谔方程组和自由边界问题以及非线性偏微分方程的稳定解等方面的研究中,解决了若干重要的数学问题,取得了具有国际影响力的研究结果,在Comm. Pure Appl. Math., J. Eur. Math. Soc., Trans. Amer. Math. Soc., Adv. Math., J. Differential Equations等数学期刊上发表学术论文三十余篇,并在Springer出版社出版一本英文专著。