研讨班

07-12-2020

几何分析研讨班第12期-Solvability of a class of singular fourth order equations of Monge-Ampere type-周斌副教授(北京大学)

报告题目:Solvability of a class of singular fourth order equations of Monge-Ampere type

报告人:周斌副教授(北京大学)

报告时间:2020年12月10日周四 14:00-15:00

报告地点:(腾讯会议ID:47530735615)

摘要:We study the solvability of the second boundary value problem for a class of highly singular fourth order equations of Monge-Ampere type. They arise in the approximation of convex functionals subject to a convexity constraint using Abreu type equations. Both the Legendre transform and partial Legendre transform are used in our analysis. In two dimensions, we establish global solutions to the second boundary value problem for highly singular Abreu equations where the right hand sides are of $q$-Laplacian type for all $q>1$. We show that minimizers of variational problems with a convexity constraint in two dimensions that arise from the Rochet-Chone model in the monopolist's problem in economics with $q$-power cost can be approximated in the uniform norm by solutions of the Abreu equation for a full range of $q$.

分享

学院办公室:010-82507161

本科生教务:010-62513386

研究生教务与国际交流:010-82507161

党团学办公室:010-62515886

在职课程培训班:010-82507075

 

邮编:100872

电话:010-82507161

传真:010-62513316

E-mail:mathruc@ruc.edu.cn/mathrucdw@ruc.edu.cn

地址:北京市海淀区中关村大街59号中国人民大学数学楼

数学学院公众号

版权所有 中国人民大学数学学院 升星提供技术服务